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Introduction

w

• In order to communicate reliably and to reduce the required

_transmitter power, NASA uses coded communication systems

on most of their deep space satellites and probes (e.g. Pioneer,

-Voyager, Galileo, and the TDRSS network).

, These communication systems use binary convolutional codes.

Better codes make the system more reliable and require less

_transmitter power.

_ However, there are no good construction techniques for convo-

-lutional codes. Thus, to find good convolutional codes requires

an exhaustive search over the ensemble of all possible codes.

In this paper, an efficient convolutional code search algorithm

-was implemented on an IBM I:tS6000 Model 580. The combi-

nation of algorithm efficiency and computational power enabled

-us to find, for the first time, the optimal rate 1/2, memory 14,

convolutional code.
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fligital Transmission Over a Noisy Channel

When binary digital data is transmitted over a real channel, it

: is subject to noise (we will assume Additive White Gaussian

Noise). The noise can cause errors to occur at the receiver.

The acceptable bit-error-rate (BER) at the receiver depends on

_ the type of data being transmitted. For example, video signals

are more forgiving of errors than computer data.

i One of the goals of forward error correction (FEC) coding, is to
allow the receiver to correct errors caused by the channel and

- thus to increase the reliability of the system and/or reduce the

_ required signal energy.
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Example (Binary Numbers)

C) , I
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"0To transmit a 5 in binary, the codeword 101 would bo sent. This

sequence of transmitted bits is then subject to channel_ noise_

If the channel noise is large enough relative to the transmitted

signal energy (per bit), the receiver may interpret a transmitted

I as a 0, or vice-versa.

- For example, an optimum receiver would interpret the.received

_- signal shown above as 111 or 8. In this case, the receiver makes

one error which in turn causes one codeword, 101, to" be con-

- verted into another codeword, 111.

__ The probability that a 1 is received as a 0 and vice versa is

called the channel tranmition probability, p, and is a ftmction of
r_

the signal-to-noise ratio (SNR),

- SNR Es
No

- where Es is the average transmitted signal energy per bit and

No is the one sided noise spectral density (a measure of the noise

- power).



Example (cont.)

r Given a channel transition probability of p, the probability that

-101 is transmitted and 111 is received is given by

Plo1,111 = P1 = (1 - p)2p

This probability can be reduced by increasing the SNR which

-in turn causes a reduction in p.

.-In this example, one bit error causes one codeword to be con-

verted into another codeword. We say that this code has mini-

- mum free Hamming distance, of df = 1.
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In general, each codeword in this code may be converted into 3

different codewords by a single bit error with probability"P1, 3

- different codewords by two bit errors with probability

P2=(1 _p)p2 <

:_ and one other codeword with three bit errors with probability
_m

P3 = (1 -- p)p2 < P2
!

- The overall probability of codeword error is

Pc = 3P1 + 3P2 + 1P3

- which can be reduced by increasing the SNR.



Geometric Interpretation and Hamming

Distance
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_Intuitive insight into the error mechanism can be obtained using

;a geometric perspective.

r From this point of view, each codeword in the previous example

-is considered a vector in a 3-.dimensional vector spac_ The
distance between two vectors is the Hamming Distance, d_, which

-is just the number of positions in which two vectors differ.

The probability that a codeword is converted into another code-

word at a Hamming distance of d is

Pd= (1- p).-dpd

-Notice, that as the Hamming distance between two codewords

increases Pd decreases!

For a fixed SN1% and thus a fixed channel transition prnbability,

p, the probability of a codeword error can be recll_ced by in-

creasing the Hamming distance between all pairs of codewords.



Example: Repetition Coding

, :, .simple coding technique is known as repetition coding: In
this scheme each bit is simply transmitted twice in succession.

j _ontinuing the previous example, repetition coding leads to the

ollowing set of codewords.
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• The mininum free Hamming distance is now df = 2 and the

-overall probability of codeword error is

- Fc =3P2+3P4 + 1P6 < Pc,

_because each codeword has 3 codewords at distance 2, 3 code-

words at distance 4, and 1 codeword at distance 6.

• The enumeration of the distances between one codeword and all

,other codewords in the code is called the code distance spec_m

and is usually depicted in the following way

d 23456
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Coding Performance Tradeoffs

The probability of codeword error in digital communications

systems on the AWGN channel is determined primarily by three

-factors:

_ 1. S NR,

=: 2. dr, the code's minimum distance, and

- 3. the code's distance spectrum.

Historically, due to the expense of putting large power supplies

in space and the relatively large amount of available bandwidth,

-NASA has chosen to improve system performance by using cod-

ing and expanding the required transmission bandwidth.
B

• With most of its satellites and deep space probes, NASA has

_chosen to use convolutional codes because of their superior per-

formance characteristics in this application.

L



Convolutional Codes

c A binary linear convolutional code with rate k/n is a set of semi-

-infinite sequences generated by a finite state machine character-

_ized by three parameters:

1. k, the number of inputs bits per encoding interval,
w

2. n, the number of output bits per encoding interval,

-3. m, the memory order of the finite state machine.

The finite state machine has 2m states.

c During each encoding interval, an (n,k,m) convolutional code
==encodes k information bits into n bits based on the current block

_:of k bits and the past m blocks of k bits.

¢ The minimum distance between codewords and thus the perfor-

-mance of a convolutional code increases as the rate decreases

and the memory increases.



A (2,1,2) Convolutional Code
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.* A rate 1/2, convolutional code is specified by a pair of generators

denoted by (gl,g2) that describe the connections from the shift

- register to the output.

_ The (2,1,2) code shown above has generators

m

gl = 101 = 5

g2 = 010=2

=



Optimal Distance Spectrum Codes

• The maximum free distance of a (2,1,14) code is known to be

"18. Many good codes have been found that have this free dis-

Lance. The goal of this research was to find the "best" rate 1/2,

-memory 14 convolutional code with free distance 18.

oOne way to do this is by finding the d!istance spectrum of every

possible code.

_Those codes with fewer paths at a given distance have a lower

_probability of error, and thus are considered better. If the num-

ber of paths are recorded for each code having a minimum free

-distance of 18, the list could then be sorted and the best code

found.

o-For example, the maximal free distance (2,1,14) code with gen-

erators (gl,g2)=(56721,61713) has 33 paths of weight 18. If an-

other (2,1,14) code with fewer weight 18 paths could be found,
-this code would be a better code.

L
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Xhe Problem with Finding Optimal Codes

,.Finding the optimal code would be easy if the all of the codes'

_distance spectra could be evaluated and sorted in a reason-

_ble amount of time. However, there are 1,073,741,824 possible

codes of memory length 14.

0-Finding a single (2,1,14) code's distance spectrum is a compli-

cated process that takes approximately 30 CPU seconds on the

-IBM RS6000 Model 580. At this rate, a search of every code

_would take roughly one millenia, not including the sort routine

to find the best code.

• Thus, to make any search feasible, it is necessary to first pare

down the number of codes that must be tested by using other

techniques for detecting inferior codes.

_In addition, all catastrophic codes must be eliminated before

_attempting to find their distance spectrum. Catastrophic codes

are codes in which a finite weight information sequence can gen-

erate an infinite weight codeword.

• This characteristic causes an infinite loop in the distance spec-

-trum algorithm; if not eliminated these codes would make the

search impossible.

• Unfortunately, an algorithm to recognize catastrophic codes is

-very complicated and time consuming because it involves fac-

toring.



14ethods of Reducing the Number of Codes

The number of codes can be reduced by making certain restric-

-tions regarding the structure of the codes. These restrictions

are based on known properties of convolutional codes and do

-not affect the search results in any way'.

The two primary restrictions used were

_ 1. both generators must start with a 1, and

2. one generator must end with a 1.

"These restrictions reduce the number of codes by a factor of 8.

,-Second, an upper bound on the free distance can be utilized

to eliminate codes that cannot achieve the known maximal free

-distance. This bound uses the row distance function, which is a

decreasing function whose limit is the free distance.

q For most codes, the row distance function converges quickly and

-is a very effective way of reducing the number of codes.

c_Third, codes whose generators are mirror images of each other

can be eliminated, because they generate identical sets of code-

-words and thus identical distance spectrums.

w



Effectiveness of Schemes to Eliminate Codes

Initially, there are 1,073,741,824 possible codes and the search

v would have taken 1021 years.

After placing the two restrictions on the code generators, the

number is reduced to 134,217',728. This search would have re-

- quired 127 years.

The row distance evaluations, which require significant compu-

tational time, reduce the number of codes to a few hundred.

w
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The Optimal Distance Search : FAST

With a reduced list of generators, evaluating the distance spec-

-quences. Using column distance function bounds to limit and

speed the search, it ultimately returns the number of paths for

-the ten lowest weights.

_ Efficient programming and compiler optimization resulted in a

CPU time of 30 seconds for the distance spectrum evaluation of

-one (2,1,14) code.

= =

After using FAST to evaluate the candidate codes, the distance

spectrum results must be sorted.

-trum becomes feasible. This was done by implementing a ver-

sion of the FAST algorithm (A Fast Algorithm for Searching a

-Tree) published by Cedervall and Johannesson.

- Given a set of generators, the FAST algorithm builds and searches

the code tree to determine the weight of all relevant code se-



Search Results and Conclusions

_The (2,1,14) code with generators (gl, g2) = (63057,44735)

_found to be the optimal distance spectrum code.

was

¢ :this code has only 26 weight 18 paths, as opposed to the pre-

viously known best (2,1,14) code which has 33 weight 18 paths.

Thus, the new code is optimum for high signal-to-noise ratios.

• The new code is being simulated using computer models Notre

-Dame and a real decoder at the Jet Propulsion Laboratory in

-Pasadena, California, to determine if it is the best code for

-moderate SNR's.

*-The techniques used in this code search are being refined and

extended to find more complex codes for future NASA applica-

tions.



Optimal Rate 1/2, K = 15 (m = 14), Convolutional Codes

The rate 1/2, K = 15 (m=14) convolutional code found by Cedervall

and Johanneson [1] is the optimum distance spectrum (ODS) code. The

generators for this code are

g(1) = 63057=1+D+D*+D s+D 9+D 11+D lu+D 13+D 14

g(2) = 44735-1+D 3+D 6+D _+D 8-4-D L°+D 11+D 12+D '4

and its distance spectrum is

d 18 19 20 21 22 23 24 t25 26

Nd 26 0 165 0 845 0 4844 1 0 28513

The generators for the code in Lin and Costello [2] are

g( 1)

g(2)

27

0

= 56721 = 1 + D 2 + D 3 + D 4 + D 6 + D 7 + D s + D 1° + D TM

= 61713=l+D+D 5+D e+D 7+D s+D _I+D 13+D 14

and its distance spectrum is

d 18 19 20 21 22 23 24 25 26 27

Nd 33 '0 136 0 835 0 4787 0 27941 0

Both of these codes are invariant to 1800 rotations of the QPSK signal

set.
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